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Società Italiana di Fisica
Springer-Verlag 1999

Ab initio calculations of energy transfer and non-additivity in the
He-Ne laser system

A.S. Shalabi1, M.M. Assem1, S. Abd El-Aal1, M.A. Kamel2, and M.M. Abd El-Rahman2

1 Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
2 Departments of Physics, Faculties of Education and Science, Ain Shams University, Cairo, Egypt

Received: 15 December 1998 / Received in final form: 20 March 1999

Abstract. Ab initio calculations were performed for several suggested mechanisms of energy transfer be-
tween helium metastable particles and neon. Optimized geometries and excited-state energies were calcu-
lated for neon excited-state complexes and the convergence properties of the non-additive contributions to
the interaction energies were examined. The most probable excitation-transfer mechanism was found to be
Hem2 (a

3Σ+
u )+Ne→ (He2Ne)

∗
r → Ne(2p53s)+2He based on an energy difference of 0.0674 eV between the

triplet excited state of Hem2 and the singlet excited state of (HeNeHe)∗r . No theoretical evidence was found
for the production of neon singlet excited-state complexes other than 20.0858 to 20.4875 eV by the con-
sidered two-, three- and four-body models of energy transfer processes. The energy curves of the reactions
involving the excited-state complexes (HeNeHe)∗r and (HeNe)

∗
r are provided and compared with the previ-

ously reported experimental results on the reaction Hem2 (a
3Σ+

u )+Ne→ (He2Ne)
∗
r → Ne(2p53s)+2He. The

relation between the probability of energy transfer and laser activity is discussed. The non-additive contri-
bution to the total interaction energy of the nominated (HeNeHe)∗r intermediate complex was found to be
negligible, pointing to the possibility of constructing model potentials and simulation of larger systems.

PACS. 34.20.-b Interatomic and intermolecular potentials and forces, potential energy surfaces for colli-
sions – 31.30.-i Corrections to electronic structure – 31.50.+w Excited states

1 Introduction

The importance of energy transfer mechanisms between
helium molecular metastable species and neon atoms has
been investigated by experimental afterglow studies on
helium-neon plasmas in both stationary and flowing gas
systems, over a wide range of pressures and mixture ra-
tios [1–5]. The interaction of metastable He(2 3S) and
He(2 1S) atoms with Ne was experimentally studied em-
ploying cross atomic beams technique [6–10]. The inter-
action He∗ + Ne potentials in 3Σ+ (He(2 3S) + Ne) and
1Σ+ (He(2 1S) + Ne) states were calculated employing
various versions of single-electron method of model poten-
tial or pseudopotential [11]. For the analysis of excitation
transfer process, the repulsive part of interaction poten-
tials U (1Σ,R) and U (3Σ,R) of He(2 3S, 2 1S) + Ne
interactions, where U(R) ≥ 10 meV are of particular in-
terest. The potentials U (1Σ,R) [6] and U (3Σ, R) [7]
are the most reliable in the repulsive region. These po-
tentials were reconstructed from data of differential scat-
tering in the wide range of relative scattering energies
−25 meV ≤ E ≤ 370 meV.

In 1980, Ernie and Oskam [12] used light absorption
and emission spectroscopy to study the time dependence
of the Hem(2 3S), Hem

2 (a3Σ+
u ), and Nem(3p2) number den-

sities and spectral emission intensities from 19 NeI states

during the afterglow of helium-neon discharges. The NeI
states below 20.56 eV were produced and Ne(2p53s) states
were found by the dissociative excitation-transfer mecha-
nism Hem

2 (a3Σ+
u ) + Ne → (He2Ne)∗r → Ne(2p53s) + 2He

involving intermediate repulsive state. In 1989, Devar-
dini, Zagrebin and Blagoev performed an analysis for the
available experimental and theoretical results about ex-
cited heteronuclear quasimolecular states of noble gases
in a review article [13]. In 1989, Fukuyama and Siska [14]
combined He∗(2 3S) + Ne differential elastic scattering
measurements in crossed supersonic beams with total
crossed supersonic beams with total cross-section veloc-
ity dependence and quenching rate constant tempera-
ture dependence to determine a 3 × 3 potential matrix
characterizing a double curve-crossing model for the col-
lision dynamics and energy transfer. In 1990, Martin,
Fukuyama and Siska [15] reported a multichannel anal-
ysis of He∗(2 1S) + Ne elastic and inelastic scattering in
crossed atomic beams. Their model suggests the impor-
tance of intermediate “chaperone” states, in which the ex-
cited electron is temporarily trapped in a d or f Rydberg
Ne orbital, in channeling flux into the 4s′ and 5s′ upper
laser states of Ne by energy transfer from He∗(2S 1/3S).
In 1992, Devardini, Zagrebin and Blagoev reviewed the
transfer in He-Ne collisions at thermal energies [16]. The
energy transfer in He (2 1,3S, 2 1,3P ) collisions and
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Ne∗-He collisions were the main content of the review.
In 1993, McLaughlin, Gillan, Burke and Dahler [17] per-
formed ab initio calculations on the e−-He+2 complex using
the R-matrix technique. Elastic cross-sections were pre-
sented for selected bond lengths in the range 1.5–4.0 a0
for the 3Σ+

u total symmetry. In relation to energy trans-
fer, if the helium molecular metastable state is nearly res-
onant with the corresponding neon metastable state, the
collision process should result in excitation energy transfer
and hence pumping of the HeNe laser system. The pump-
ing of neon in the helium-neon gas laser depends on a
coincidental matching of the helium and neon energy sep-
arations, so that excited helium can transfer excess energy
to neon during a collision and the probability of a collision
depends on the degree of coincidental matching.

Despite the fact that there has been a considerable in-
terest in the role of non-additivity of closed-shell atoms
and ions in their ground states [18], very little is known
either experimentally or theoretically about the size or
functional form of non-additivity in the excited-state com-
plexes of He-Ne. From the calculations which have been
performed on small clusters of atoms with all the interpar-
ticle distance equal or not too dissimilar, it appears that
individual m-body terms are usually smaller than m − 1
body terms, but do not necessarily converge rapidly. Inert
gas clusters in their ground electronic states received the
most attention [19]. At both short-range X and around
the van der Waals minimum Y the interaction energy
was dominated by pair terms. However, at very close sep-
arations this was no longer true [20]. The role of non-
additivity for systems with (n ≥ 3), where (n) is the
number of interacting particles, is therefore a prerequisite
for constructing model potentials and simulation of larger
systems. Since the HeNe laser is basically an excited-state
system, the role of non-additivity in He-Ne excited-state
complexes should be of interest.

As shown, published ab initio calculations concern-
ing the reaction mechanism for energy transfer between
the helium molecular metastable state and neon, energy
curves of reactions involving excited-state complexes as
well as the role of non-additivity in these complexes are
still scarce. In the present study, an attempt has been
made to address these topics using the CIS methods of ab
initio theory.

2 Methods and calculations

2.1 Interaction energies

Interaction energies were calculated by subtracting the
asymptotic energies (rather than the monomer energies)
from the total energies to minimize the size extensivity er-
ror of the truncated CIS expansion. Approximations which
have the property that the calculated energy varies lin-
early with the number of particles as the size of the subsys-
tem increases are said to be size extensive. It follows that
size extensivity means that calculations under the assump-
tion of infinite distance between the monomers should
yield the sum of the monomer energies. For truncated CI

methods, the energy of two non-interacting subsystems
is not twice the energy of one of them, calculated in the
same approximation. Several evidences for the importance
of the size extensivity error (SEE) in the truncated CI
methods were obtained. Since SEE can be as large as the
stabilization energy itself, it must be eliminated. Elimina-
tion can be done either rigorously by including all types of
excitations in the CI method or partially by subtracting
the energy of the supersystem at infinite distance from the
energy of the same supersystem at its equilibrium. Since
the size extensivity error of the truncated CIS method em-
ployed in the present calculations has been minimized, the
major source of errors left will be the neglect of higher-
order terms of the CIS expansion. The CIS method named
CI-Singles uses the configuration interaction approach and
model excited states as combinations of single substitu-
tions out of the Hartree-Fock ground state. CI-Singles is
comparable to Hartree-Fock theory for ground-state sys-
tems in that it is qualitatively accurate if not always highly
quantitatively predictive. Despite this comparison, the CI-
Singles method does include some electron correlation [21].
A second source of error in the present calculations is the
basis set superposition error (BSSE). This error has been
minimized in the present calculations by using the basis
set 6−311++G(3df, 3pd) and is relatively less important
than the SEE at the Hartree-Fock and electron correla-
tion levels as proved in a comparative study for errors in
HeH− weak van der Waals interaction potentials [22]. The
neglect of zero-point vibrational energies may also affect
the accuracy of the calculated energies.

2.2 Non-additivity

The calculations of pairwise (additive) and non-pairwise
(non-additive) contributions to the total interaction en-
ergy of a microcluster may be carried out using the fol-
lowing scheme.

If the total energy E(n) of a microcluster of (n) inter-
acting atoms is written as

E =
n∑

m≥1

E(m,n) =
n∑
i

E(1, n)i +
n∑

i<j

E(2, n)ij

+
n∑

i<j<k

E(3, n)ijk + . . . + E(n, n)ijk...n .

The total interaction energy ∆E(n) will be obtained by
subtracting the monomer energies from the total energy:

∆E(n) =
n∑

m≥1

E(m,n)−
n∑
i

E(1, n)i =

n∑
i<j

E(2, n)ij +
n∑

i<j<k

E(3, n)ijk + . . . + E(n, n)ijk...n .

The first, second, through (n) terms in the last expres-
sion represent the two-, three, through (n)-body contribu-
tions to the total interaction energy. There are n(n−1)/2!
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two-body terms, n(n− 1)(n− 2)/3! three-body terms and
n(n− 1)(n− 2) . . . (n− n)/n! body term, where (n) is the
number of atoms in the finite cluster and the expansion is
claimed to be convergent when the non-pairwise contribu-
tions are negligible relative to the pairwise contributions.
E(m,n) are the m-body contributions to the total energy
of n interacting atoms. If m = 1, then E(1, n)i will rep-
resent the energy of atom i. If m = 2, then E(2, n)ij will
represent the interaction energy between atoms i and j.
The interaction energy between atoms i and j is calcu-
lated by subtracting the monomer energies from the total
energy of the dimer. If m = 3, then E(3, n)ijk will repre-
sent the sum of interaction energies between atoms i and
j, i and k as well as j and k in addition to the three-body
term. The cycle is then repeated for m ≥ 4. In Tables 3
and 4 the following notations will be used:

ΣE(2) =
n∑

i<j

E(2, 4)ij ,

ΣE(3) =
n∑

i<j<K

E(3, 4)ijk ,

E(4) = E(4, 4)ijkl ,

and the ratio

ΣE(n>2)

/
ΣE(2)

will be considered as a measure for non-additivity.
The internally built 6 − 311 + +G(3df, 3pd) basis has

been used in the present calculations. This basis set puts
3d functions and 1f functions on heavy atoms, 3p func-
tions and 1d functions on hydrogens, as well as diffuse
functions on both, and is fairly adequate for the descrip-
tion of excited states. Ab initio calculations were carried
out using Gaussian 92 [23].

3 Results and discussion

3.1 Mechanisms of energy transfer and curves of
excited-state complexes

Four collision mechanisms are suggested for excitation
transfer between the helium molecular metastable state
and neon ground state:

Hem
2 (a3Σ+

u ) + Ne → (He2Ne)∗r →
Ne(2p53s) + 2He + ∆E , (1)

Hem
2 (a3Σ+

u ) + Ne → (HeNe )∗r +He
↘
He + Ne(2p53s) + ∆E , (2)

Hem
2 (a3Σ+

u )Ne2 → He2 +(Ne2)
∗
r↘ ↘

2He 2Ne(2p53s) + ∆E , (3)

Hem
2 (a3Σ+

u ) + Ne2 → (He2Ne2)∗r →
2He + 2Ne(2p53s) + ∆E . (4)

Geometry optimization was performed and excited-
state energies were calculated for the helium molecular
metastable states Hem

2 (a1Σ+
u ) and Hem

2 (a3Σ+
u ) as well

as for different configurations of intermediate neon com-
plexes (He2Ne)∗r , (HeNe)

∗
r , (Ne)

∗
r and (He2Ne2)∗r . We have

considered two orientations for (He2Ne)∗r and five config-
urations for (He2Ne2)∗r . These are shown together with
the corresponding CIS energies, lowest singlet and lowest
triplet excited-state energies in Table 1. We have also con-
sidered the difference in energy between Hem

2 (a
3Σ+

u ) and
the corresponding neon singlet excited-state complex as an
indirect measure for the probability of excitation energy
transfer. The smaller the difference, the larger the prob-
ability that a collision should result in excitation energy
transfer.

Ernie and Oskam [12] have investigated the energy
transfer mechanism:

Hem
2 (a3Σ+

u ) + Ne → (He2Ne)∗r →
Ne(2p53s) + 2He + ∆E (1)

in which an intermediate interaction state complex
(He2Ne)∗r is created. This state then dissociates via a re-
pulsive interaction potential energy curve into the appro-
priate atomic states with total kinetic energy ∆E. They
have shown that the energy difference ∆E between the
Hem

2 (a3Σ+
u ) state and the neon 2p53s levels is at least

1.18 eV and that the resulting large excess energy must
appear as kinetic energy for the reaction products.

Geometry optimization was performed and excited en-
ergies were calculated for Hem

2 and the two possible orien-
tations of (He2Ne)∗r , namely (HeNeHe)∗r and (HeHeNe)∗r .
RHeHe, the bond length of Hem

2 was calculated to be
3.8797 Å and the excited-state energies of Hem

2 (a1Σ+
u )

and Hem
2 (a3Σ+

u ) were 22.6232 eV and 20.3271 eV, respec-
tively. The two predicted orientations of (He2Ne)∗r were
linear with RHeNe = 3.245 Å in (HeNeHe)∗r and RHeHe =
2.632 Å and RHeNe = 3.1851 Å in (HeHeNe)∗r . The low-
est singlet and triplet excited states were calculated to be
20.2597 eV and 19.5613 eV, respectively, for (HeNeHe)∗r
and 20.4647 eV and 19.7149 eV for (HeHeNe)∗r . The en-
ergy difference ∆E between Hem

2 (a
3Σ+

u ) and the lowest
singlet excited states of (HeNeHe)∗r and (HeHeNe)∗r were
calculated to be 0.0674 eV and 0.1376 eV, respectively.
This may lead us to conclude that energy transfer takes
place between the triplet excited state of Hem

2 and the
lowest singlet excited state of the (HeNeHe)∗r intermedi-
ate complex.

Figure 1 shows the energetics of this reaction and con-
tains the energy curves of the Hem

2 (a
3Σ+

u ) and (HeNeHe)∗r
states as well as the CIS curves of He2 and HeNeHe.
If it is assumed that the Hem

2 (a3Σ+
u ) species are in the

lowest vibrational level (ν = 0), then the energy differ-
ence between Hem

2 (a
3Σ+

u , ν = 0) species and the He2
is, assuming Franck-Condon transitions, ∼ 20.3271 eV.
However, ∼ 20.2597 eV is required for the production of
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Fig. 1. Energy curves of Hem2 (a
3Σ+

u ) triplet (T) and (HeNeHe)
∗
r singlet (S) excited states and the corresponding CIS curves of

He2 and HeNeHe. The energies involved in the transitions are relevant to mechanism (1).

the lowest singlet excited-state complex (HeNeHe)∗r . This
implies a discrepancy in the energetics of reaction (1)
of 0.0674 eV. Hence, under the stated assumptions, the
three-body model for reaction (1) is energetically more
favorable than the reaction

Hem
2 (a3Σ+

u ) + Ne → (He2)r + Ne(2p53s)
↘
2He + ∆E ,

to which Ernie and Oskam [12] reported a discrepancy of
at least 0.9 eV.

Although the intermediate state (He2Ne)∗r is a three-
particle complex and must be treated as such in any exact
description, it is possible to gain some insights into the

possible reaction mechanisms using two-particle models.
One such model would involve the creation of an excited-
state helium-neon complex on a repulsive curve. This com-
plex, (HeNe)∗r , would then dissociate with the excess en-
ergy ∆E appearing as the kinetic energy of the resulting
He and Ne atoms:

Hem
2 (a3Σ+

u ) + Ne → (He Ne )∗r +He
↘

He + Ne(2p53s) + ∆E . (2)

Ernie and Oskam [12] suggested this mechanism and
reported that, for such a reaction to occur, a repulsive
HeNe excited-state complex with the appropriate energy
curve must exist. It is not known whether such a state
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Fig. 2. Energy curves of Hem2 (a
3Σ+

u ) triplet (T) and (HeNe)
∗
r singlet (S) excited states and the corresponding CIS curves of

He2 and HeNe. The energies involved in the transitions are relevant to mechanism (2).

exists nor what the resulting energy curve would be.
In an attempt to answer these questions, we have per-
formed ab initio calculations for the energetics of this re-
action and displayed the energy curves of the Hem

2 (a3Σ+
u )

and (HeNe)∗r states as well as the CIS curves of He2
and HeNe in Figure 2. As stated previously, if it is as-
sumed that the Hem

2 (a3Σ+
u ) species are in the lowest vi-

brational level (ν = 0), the energy difference between
Hem

2 (a3Σ+
u , ν = 0) species and He2 is 20.3271 eV, as-

suming Franck-Condon transitions. However, 20.4663 eV
is required for the production of the lowest singlet excited-
state complex (HeNe)∗r . This implies a discrepancy in the
energetics of reaction (2) of ∼ 0.1392 eV. Hence, under the
stated assumptions, the two-body model of reaction (2) is

energetically more favorable than the reaction

Hem
2 (a3Σ+

u ) + Ne → (He2)r + Ne(2p53s)
↘
2He + ∆E

reported by Ernie and Oskam [12] where a discrepancy of
at least 0.9 eV was observed.

Geometry optimization was performed for (NeNe)∗r
and the calculated bond length was 3.2056 Å. The lowest
singlet and triplet excited-state energies were 20.4663 eV
and 19.7266 eV, respectively. The difference in energy ∆E
between Hem

2 (a3Σ+
u ) and the lowest singlet excited state

of (HeNe)∗r was 0.1392 eV.
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Table 1. Total energies E, lowest excited-state energies of helium molecular metastable state and intermediate neon complexes
and the optimal geometries for the considered two-, three- and four-body models of rare-gas clusters at the CIS level using the
6− 311 + +G(3df, 3dp) basis set.

(1) Hem2 E = −4.9729619Eh
1Σ+

u 22.6232 eV R = 3.87966255 Å
3Σ+

u 20.3271 eV

Two-body models
(1) (Ne2)

∗
r E = −256.3267466Eh Singlet 20.4875 eV R = 3.35998012 Å

Triplet 19.7741 eV

(2) (HeNe)∗r E = −130.6617401Eh Singlet 20.4663 eV R = 3.20561071 Å
Triplet 19.7266 eV

Three-body models
(1) (HeNeHe)∗r E = −133.5276468Eh Singlet 20.2597 eV RHeNe = 3.24498912 Å

Triplet 19.5613 eV

(2) (HeHeNe)∗r E = −133.5220348Eh Singlet 20.4647 eV RHeHe = 3.18512836 Å
Triplet 19.7149 eV RHeHe = 2.63199990 Å

Four-body models
(1)(HeNeHeNe)∗r E = −262.0547966Eh Singlet 20.2498 eV RHeNe = 3.2477832 Å

Triplet 19.5537 eV RNeHe = 3.22564101 Å
RHeNe = 2.85543954 Å

(2) (HeNeNeHe)∗r E = −262.0535433Eh Singlet 20.2528 eV RHeNe = 3.2234983 Å
Triplet 19.5915 eV RNeNe = 3.24149828 Å

(3) (NeHeHeNe)∗r E = −262.0487424Eh Singlet 20.4633 eV RNeHe = 3.18066807 Å
Triplet 19.7144 eV RHeHe = 2.60789533 Å

(4)


 He −− He

| |
Ne −− He




∗

r

E = −262.0546483Eh Singlet 20.2224 eV RHeNe = 3.19659649 Å

Triplet 19.5616 eV

(5)


 Ne −− Ne

| |
He −− He




∗

r

E = −262.046721669Eh Singlet 20.0858 eV RHeHe = 3.44131712 Å

Triplet 19.4408 eV RHeNe = 4.35328768 Å
RNeNe = 4.92702283 Å

∠HeHeNe = 92.14966702◦ ∠HeNeNe = 46.94929629◦

Other possible reaction mechanisms using the two-par-
ticle model may involve the reaction between the molec-
ular metastable state Hem

2 (a
3Σ+

u ) and the neon ground-
state molecule. This model would involve the creation of
an excited-state Ne2 complex on a repulsive curve. This
complex (Ne2)∗r , would then dissociate with the excess en-
ergy ∆E appearing as the kinetic energy of the resulting
Ne atoms:

Hem
2 (a3Σ+

u ) + Ne2 → He2 +(Ne2)
∗
r↘ ↘

2He 2Ne(2p53s) + ∆E . (3)

Geometry optimization was performed for (Ne2)∗r and the
calculated bond length was 3.3599 Å. The lowest singlet
and triplet excited-state energies were 20.4875 eV and
19.7741 eV, respectively. The difference in energy ∆E be-
tween Hem

2 (a3Σ+
u ) and the lowest singlet excited state of

(Ne2)∗r is 0.1604 eV compared with 0.1392 eV for (HeNe)∗r .

(HeNe)∗r is thus a more favorable reactive intermediate
than (Ne2)∗r as far as the two-body model is concerned.

Finally, we consider the four-body model that involves
the creation of an excited He2Ne2 complex on the repulsive
curve. This complex would then dissociate with the excess
energy ∆E appearing as the kinetic energy of the resulting
He and Ne atoms, i.e.,

Hem
2 (a3Σ+

u ) + Ne2 → (He2Ne2)∗r →
2He + 2Ne(2p53s) + ∆E ; (4)

however, for such a reaction to occur a repulsive He2Ne2
excited-state complex with the appropriate energy curve
must exist. We have therefore considered five probable ori-
entations for the He2Ne2 excited-state complex, see Ta-
ble 1. Geometry optimization was performed for each ori-
entation. RHeNe = 3.2478 Å, RNeHe = 3.2256 Å and
RHeNe = 2.8554 Å for the linear orientation (HeNeHeNe)∗r .
RHeNe = 3.2235 Å and RNeNe = 3.2415 Å for the lin-
ear orientation (HeNeNeHe)∗r . RNeHe = 3.1806 Å and
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Table 2. The energy difference ∆E between Hem2 (a
3Σ+

u ) and
singlet excited-state energies of neon complexes. In the last col-
umn ∆E are arranged in an ascending order. CIS calculations
were carried out using the basis set 6− 311 + +G(3df, 3dp) at
the optimized geometries given in Table 1.

∆E/eV Order of ∆E

Two-body models
(1) (Ne2)

∗
r 0.1604 (9)

(2) (HeNe)∗r 0.1392 (8)

Three-body models
(1) (HeNeHe)∗r 0.0674 (1)

(2) (HeHeNe)∗r 0.1376 (7)

Four-body models
(1) (HeNeHeNe)∗r 0.0773 (3)

(2) (HeNeNeHe)∗r 0.0743 (2)

(3) (NeHeHeNe)∗r 0.1362 (6)

(4)


 He −− Ne

| |
Ne −− He




∗

r

0.1047 (4)

(5)


 Ne −− Ne

| |
He −− He




∗

r

0.1190 (5)

RHeHe = 2.6079 Å for the orientation (NeHeHeNe)∗r .
RHeNe = 3.1966 Å for the cyclic planar orientation
(HeNeHeNe)∗r . RHeHe = 3.4413 Å, RHeNe = 4.3533 Å,
RNeNe = 4.9270 Å, ∠HeNeNe = 46.9493◦, ∠HeHeNe =
92.1497◦ for the cyclic planar orientation (NeNeHeHe)∗r .
As shown in Table 2 the smallest energy difference between
Hem

2 (a3Σ+
u ) and the singlet excited states of (He2Ne2)∗r

is assigned to the linear orientation (HeNeNeHe)∗r . It is
therefore suggested to be the most favorable reactive in-
termediate of the four-body model.

The energy difference ∆E between the helium molecu-
lar metastable state Hem

2 (a
3Σ+

u ) and singlet excited-state
complexes of neon are given in Table 2. ∆E are arranged
in an ascending order in the last column. As shown from
this table the excitation-transfer mechanism

Hem
2 (a3Σ+

u ) + Ne → (HeNeHe)∗r →
Ne(2p53s) + 2He + ∆E

might be the most probable based on an energy difference
of 0.0674 eV. The result is in agreement with the previous
prediction of Ernie and Oskam [12] that the Ne(2p53s)
states are formed directly by the dissociative excitation-
transfer mechanism

Hem
2 (a3Σ+

u ) + Ne → (He2Ne)∗r →
Ne(2p53s) + 2He + ∆E

and may nominate the reactants as candidates for lasing
activity involving the (HeNeHe)∗r intermediate subject to
the constraint of the truncated CIS method employed in

the present calculations. The second through the ninth
priority candidates may then be identified from the last
column of Table 2.

Inspection of Table 1 reveals that no theoretical evi-
dence was found for the production of neon singlet excited-
state complexes other than 20.0858 eV to 20.4875 eV by
the considered two-, three-, and four-body models of en-
ergy transfer processes. The result may be compared with
the experimental observation of Ernie and Oskam [12] that
no evidence was found for the production of NeI energy
levels above 20.56 eV by binary energy-transfer processes.

3.2 The role of non-additivity in He-Ne excited-state
complexes

Very little appears to be known about the role of non-
additivity in small clusters of atoms in their excited elec-
tronic states. This situation exists because reasonably ac-
curate pair potentials over a wide range of R are only
just becoming available. Most of the previous theoretical
work is based on effective pair potentials which are usu-
ally derived from solid-state data. Since these effective pair
potentials inevitably incorporate some many-body charac-
ter, they cannot give any information on the size of many-
body contributions to bulk or small-cluster properties, in
particular the excited-state properties.

It is conventional to divide the total interaction energy
of (n) interacting atoms into pairwise additive and non-
pairwise additive contributions. The convergence property
of the non-pairwise additive contributions is a prerequi-
site for constructing model potentials and simulation of
larger systems. If the non-pairwise additive contributions
are negligible relative to the pairwise additive counter-
parts, the total interaction energy will be well represented
as the sum of two-body terms. We are therefore inter-
ested in the role of non-additivity. However, this method
is based on the assumption that potential energy surfaces
only the interaction configuration contributions in a re-
duced form. The assumption could be rather drastic for
an excited state, where the electronic states are expected
to be more closely spaced. A logical consequence of this
limitation is that the present results must be considered
as lower limits to the real interaction.

In Tables 3 and 4, the ground- and singlet excited-state
properties of the many-body energies and non-additivities
for the considered three- and four-body models are given
and CIS calculations were carried out at the optimized
geometries given in Table 1. The total interaction energy,
as well as the pairwise and non-pairwise additive contri-
butions of the excited-state models were approximately
twice those of the ground-state models.

Apart from the (HeNeHeNe) intermediate complex,
the non-additivity (last columns of Tab. 2 and 4) of
the ground-state models was approximately the same as
that of the excited states. With few exceptions, the non-
additivity term E(4) was much greater than ΣE(3) and
opposite in sign. The negative sign of a term implies con-
tribution to the attraction and the positive sign implies
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Table 3. Ground-state total interaction energies ∆E, two-, three, and four-body terms (ΣE(2), ΣE(3), E(4)) as well as the
non-additivity ΣE(n>2)/ΣE(2) for the considered three- and four-body models. CIS calculations were carried out using the
basis set 6− 311 + +G(3df, 3dp) at the optimized geometries given in Table 1. All energies are given in eV.

∆E ΣE(2) ΣE(3) E(4) ΣE(n>2)/ΣE(2)

HeNeHe −0.4979 −0.5768 0.0789 – −0.1368
HeHeNe −0.2993 −0.1850 −0.1143 – 0.6178

HeNeHeNe −7.8310 −0.8435 0.3401 −7.3276 8.6871

HeNeNeHe −0.5088 −0.8517 0.2258 0.117 −0.1374
NeHeHeNe −0.3047 −0.4734 −0.2286 0.3973 −0.8392

 He −− Ne
| |
Ne −− He


 −0.5415 −1.2789 −0.8571 1.5945 −1.2468


 Ne −− Ne

| |
He −− He


 −8.0242 −0.9531 0.9387 −8.009 8.4031

Table 4. Singlet excited-state total interaction energies ∆E, two-, three, and four-body terms (ΣE(2), ΣE(3), E(4)) as well as
the non-additivity ΣE(n>2)/ΣE(2) for the considered three- and four-body models. CIS calculations were carried out using the
basis set 6− 311 + +G(3df, 3dp) at the optimized geometries given in Table 1. All energies are given in eV.

∆E ΣE(2) ΣE(3) E(4) ΣE(n>2)/ΣE(2)

HeNeHe −0.9911 −1.1487 0.1576 – −0.1372
HeHeNe −0.6002 −0.3704 −0.2298 – 0.6204

HeNeHeNe −15.6588 −1.6816 0.6774 −14.6547 8.7147

HeNeNeHe −1.0091 −1.6959 0.4516 0.2352 −0.1387
NeHeHeNe −0.6098 −0.9475 −0.4572 0.7948 −0.8388
 He −− Ne

| |
Ne −− He


 −1.0739 −2.5524 0.8577 0.6207 −0.2432


 Ne −− Ne

| |
He −− He


 −16.041 −1.8942 1.8707 −16.0175 8.4561

contribution to the repulsion. As shown, the pairwise ad-
ditive terms always contribute to the attraction between
the atoms in their ground and excited electronic states,
while the non-pairwise additive corrections were either at-
tractive or repulsive.

While the non-pairwise additive contributions were
by no means negligible in the ground and excited states
of the four-body models, they were significantly smaller
than the two-body terms of the three-body models. Fortu-
nately, the least significant contributions of non-additivity
were assigned to the (HeNeHe)∗r intermediate complexes
in both the ground and exited states. Since the reactants
Hem

2 (a3Σ+
u ) and Ne have been nominated as candidates

for a laser active system involving the (HeNeHe)∗r interme-
diate, it looks feasible to construct model potentials and
simulate larger systems.

4 Conclusions

In the present paper, an attempt has been made to report
on ab initio calculations performed on two-, three- and
four-atomic rare-gas clusters with the purposes of eluci-
dating the mechanism of the population inversion in the
He-Ne laser and estimating the importance of two-, three-
and four-body terms in the potential of the clusters. Tak-
ing into account the reported limitations that affect the
accuracy of the calculated energies and assuming Franck-
Condon transitions, two major conclusions may be drawn
from this work. Firstly, no theoretical evidence was found
for the production of neon excited-state complexes other
than 20.0858 eV to 20.4875 eV and energy transfer is most
probable through the (HeNeHe)∗r intermediate. Secondly,
the non-additive contribution to the total interaction en-
ergy of (HeNeHe)∗r was quite negligible, suggesting that
the total interaction energy could be well represented as
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the sum of the two-body terms. Constructing model po-
tentials and simulation of larger systems may therefore be
suggested for future investigations of laser active systems.
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